An interfacial CS bond bridged S-scheme ZnS/C3N5 for photocatalytic H2 evolution: Opposite internal-electric-field of ZnS/C3N4, increased field strength, and accelerated surface reaction

Journal of Colloid and Interface Science(2024)

引用 0|浏览3
暂无评分
摘要
An interfacial CS bond bridged ZnS/C3N5 heterojunction was constructed for photocatalytic H2 evolution. Different from traditional type-II ZnS/C3N4 heterojunction, the electron transfer followed S-scheme pathway, due to opposite internal-electric-field (IEF) directions in these two heterojunctions. The CS bond formation was carefully investigated, and they were susceptive to the preparation temperatures. In photocatalytic reaction, CS bond was functioned as the “high-speed channel” for electron separation and transfer, and the IEF strength in ZnS/C3N5 was 1.86 × 108 V/m, 2.6 times higher than that in ZnS/C3N4. Moreover, the CS bond also altered the surface molecular structure of ZnS/C3N5, and hence the surface reaction was accelerated via improving H2O adsorption and activation behaviors. Benefiting from the S-scheme pathway, enhanced IEF strength, and accelerated surface reaction, the photocatalytic H2 production over ZnS/C3N5 reached up to 20.18 mmol/g/h, 3.2 and 2.5 times higher than those of ZnS/C3N4 and ZnS/C3N5-300 without CS bond.
更多
查看译文
关键词
S-scheme heterojunction,CS bond,Opposite internal-electric-field,Photocatalytic H2 evolution,Adsorbed H2O
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要