Interleukin-1β promotes human metapneumovirus replication via activating the cGAS-STING pathway

Guojin Wu, Yueyan Zhang,Linlin Niu,Yuan Hu,Yuting Yang,Yao Zhao

Virus Research(2024)

引用 0|浏览0
暂无评分
摘要
Background Human metapneumovirus(hMPV) is one of the most common viruses that cause acute lower respiratory tract infections. Interleukin-1β (IL-1β) has been reported to play an important role in multiple virus replication. Patients with hMPV infection have increased levels of IL-1β which reminds IL-1β is associated with hMPV infection. However, the mechanism by which IL-1β affects hMPV replication remains unclear. In this study, we explore the effect of IL-1β on hMPV replication and investigate its specific mechanism of action. Methods We established an hMPV infection model through Human bronchial epithelial cells (16HBE). qRT-PCR and Western Blot were used to detect the expression levels of IL-1β, cyclic GMP-AMP synthase (cGAS), and interferon stimulating factor (STING). Regulating IL-1β expression by small interfering RNA (siRNA) or exogenous supplementary to study the influence of hMPV replication. The selective cGAS inhibitor RU.521, G150, and STING inhibitor H-151 were utilized to detect hMPV replication in 16HBE cells. Results The level of IL-1β protein increased in a time-dependent and dose-dependent manner after hMPV infection. The mRNA and protein levels of cGAS and STING were significantly up-regulated. Knockdown of IL-1β could contribute to the decreased viral loads of hMPV. While the exogenous supplement of recombinant human IL-1β in cells, replication of hMPV was significantly increased. Additionally, the level of cGAS-STING protein expression would be affected by regulating IL-1β expression. Inhibitors of the cGAS-STING pathway led to a lower level of hMPV replication. Conclusion This study found that IL-1β could promote hMPV replication through the cGAS-STING pathway, which has the potential to serve as a candidate to fight against hMPV infection, targeting IL-1β may be an effective new strategy to restrain virus replication.
更多
查看译文
关键词
Human metapneumovirus,IL-1β,cGAS-STING signaling pathway
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要