The First Spatially Resolved Detection of 13CN in a Protoplanetary Disk and Evidence for Complex Carbon Isotope Fractionation

ASTROPHYSICAL JOURNAL(2024)

引用 0|浏览5
暂无评分
摘要
Recent measurements of carbon isotope ratios in both protoplanetary disks and exoplanet atmospheres have suggested a possible transfer of significant carbon isotope fractionation from disks to planets. For a clearer understanding of the isotopic link between disks and planets, it is important to measure the carbon isotope ratios in various species. In this paper, we present a detection of the (CN)-C-13 N = 2 - 1 hyperfine lines in the TW Hya disk with the Atacama Large Millimeter/submillimeter Array. This is the first spatially resolved detection of (CN)-C-13 in disks, which enables us to measure the spatially resolved (CN)-C-12/(CN)-C-13 ratio for the first time. We conducted nonlocal thermal equilibrium modeling of the (CN)-C-13 lines in conjunction with previously observed (CN)-C-12 lines to derive the kinetic temperature, H2 volume density, and column densities of (CN)-C-12 and (CN)-C-13. The H2 volume density is found to range between (4 - 10) x 10(7) cm(-3), suggesting that CN molecules mainly reside in the disk's upper layer. The (CN)-C-12/(CN)-C-13 ratio is measured to be 70(-6)(+9) at 30 < r < 80 au from the central star, which is similar to the C-12/C-13 ratio in the interstellar medium. However, this value differs from the previously reported values found for other carbon-bearing molecules (CO and HCN) in the TW Hya disk. This could be self-consistently explained by different emission layer heights for different molecules combined with preferential sequestration of C-12 into the solid phase toward the disk midplane. This study reveals the complexity of the carbon isotope fractionation operating in disks.
更多
查看译文
关键词
Protoplanetary disks,Astrochemistry,Isotopic abundances
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要