Crystalline axion electrodynamics in charge-ordered Dirac semimetals

arxiv(2024)

引用 0|浏览1
暂无评分
摘要
Three-dimensional Dirac semimetals can be driven into an insulating state by coupling to a charge density wave (CDW) order. Here, we consider the quantized crystalline responses of such charge-ordered Dirac semimetals, which we dub Dirac-CDW insulators, in which charge is bound to disclination defects of the lattice. Using analytic and numeric methods we show the following. First, when the CDW is lattice-commensurate, disclination-line defects of the lattice have a quantized charge per length. Second, when the CDW is inversion-symmetric, disclinations of the lattice have a quantized electric polarization. Third, when the CDW is lattice-commensurate and inversion-symmetric, disclinations are characterized by a "disclination filling anomaly" – a quantized difference in the total charge bound to disclination-lines of Dirac-CDW with open and periodic boundaries. We construct an effective response theory that captures the topological responses of the Dirac-CDW insulators in terms of a total derivative term, denoted the R∧ F term. The R∧ F term describes the crystalline analog of the axion electrodynamics that are found in Weyl semimetal-CDW insulators. We also use the crystalline responses and corresponding response theories to classify the strongly correlated topological phases of three-dimensions Dirac-semimetals.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要