Podocyte Ercc1 is indispensable for glomerular integrity

Eriko Yoshida Hama, Ran Nakamichi,Akihito Hishikawa, Miho Kihara, Takaya Abe,Norifumi Yoshimoto, Erina Sugita Nishimura, Hiroshi Itoh,Kaori Hayashi

BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS(2024)

引用 0|浏览0
暂无评分
摘要
As life expectancy continues to increase, age -related kidney diseases are becoming more prevalent. Chronic kidney disease (CKD) is not only a consequence of aging but also a potential accelerator of aging process. Here we report the pivotal role of podocyte ERCC1, a DNA repair factor, in maintaining glomerular integrity and a potential effect on multiple organs. Podocyte-specific ERCC1-knockout mice developed severe proteinuria, glomerulosclerosis, and renal failure, accompanied by a significant increase in glomerular DNA single -strand breaks (SSBs) and double -strand breaks (DSBs). ERCC1 gene transfer experiment in the knockout mice attenuated proteinuria and glomerulosclerosis with reduced DNA damage. Notably, CD44+CD8+ memory T cells, indicative of T -cell senescence, were already elevated in the peripheral blood of knockout mice at 10 weeks old. Additionally, levels of senescence -associated secretory phenotype (SASP) factors were significantly increased in both the circulation and multiple organs of the knockout mice. In older mice and human patients, we observed an accumulation of DSBs and an even greater buildup of SSBs in glomeruli, despite no significant reduction in ERCC1 expression with age in mice. Collectively, our findings highlight the crucial role of ERCC1 in repairing podocyte DNA damage, with potential implications for inflammation in various organs.
更多
查看译文
关键词
Podocytes,DNA damage,Aging,ERCC1
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要