Improving potential energy surfaces using measured Feshbach resonance states.

Karl P Horn,Luis Itza Vazquez-Salazar, Christiane P Koch,Markus Meuwly

Science advances(2024)

引用 0|浏览2
暂无评分
摘要
The structure and dynamics of a molecular system is governed by its potential energy surface (PES), representing the total energy as a function of the nuclear coordinates. Obtaining accurate potential energy surfaces is limited by the exponential scaling of Hilbert space, restricting quantitative predictions of experimental observables from first principles to small molecules with just a few electrons. Here, we present an explicitly physics-informed approach for improving and assessing the quality of families of PESs by modifying them through linear coordinate transformations based on experimental data. We demonstrate this "morphing" of the PES for the He - H2+ complex using recent comprehensive Feshbach resonance (FR) measurements for reference PESs at three different levels of quantum chemistry. In all cases, the positions and intensities of peaks in the energy distributions are improved. We find these observables to be mainly sensitive to the long-range part of the PES.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要