Large-Area Conductive MOF Ultrathin Film Controllably Integrating Dinuclear-Metal Sites and Photosensitizers to Boost Photocatalytic CO2 Reduction with H2O as an Electron Donor

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY(2024)

引用 0|浏览9
暂无评分
摘要
Owing to the electrical conductivity and periodic porosity, conductive metal-organic framework (cMOF) ultrathin films open new perspectives to photocatalysis. The space-selective assembly of catalytic sites and photosensitizers in/on cMOF is favorable for promoting the separation of photogenerated carriers and mass transfer. However, the controllable integration of functional units into the cMOF film is rarely reported. Herein, via the synergistic effect of steric hindrance and an electrostatic-driven strategy, the dinuclear-metal molecular catalysts (DMC) and perovskite (PVK) quantum dot photosensitizers were immobilized into channels and onto the surface of cMOF ultrathin films, respectively, affording [DMC@cMOF]-PVK film photocatalysts. In this unique heterostructure, cMOF not only facilitated the charge transfer from PVK to DMC but also guaranteed mass transfer. Using H2O as an electron donor, [DMC@cMOF]-PVK realized a 133.36 mu mol center dot g(-1)center dot h(-1) CO yield in photocatalytic CO2 reduction, much higher than PVK and DMC-PVK. Owing to the excellent light transmission of films, multilayers of [DMC@cMOF]-PVK were integrated to increase the CO yield per unit area, and the 10-layer device realized a 1115.92 mu mol center dot m(-2) CO yield in 4 h, which was 8-fold higher than that of powder counterpart. This work not only lightens the development of cMOF-based composite films but also paves a novel avenue for an ultrathin film photocatalyst. [GRAPHICS]
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要