pH-responsive CuS/DSF/EL/PVP nanoplatform alleviates inflammatory bowel disease in mice via regulating gut immunity and microbiota.

Jinpeng Yao,Yu Chen, Liang Zhang,Yuancun Cheng, Zheng Chen, Yanhui Zhang,Xiaoyi Zheng,Yanwei Lv,Shige Wang,Zhaoshen Li,Jiulong Zhao

Acta biomaterialia(2024)

引用 0|浏览5
暂无评分
摘要
The clinical treatment of inflammatory bowel disease (IBD) is challenging. We developed copper sulfate (CuS)/disulfiram (DSF)/methacrylic acid-ethyl acrylate copolymer (EL)/polyvinylpyrrolidone (PVP) nanoplatform (CuS/DSF/EL/PVP) and evaluated its efficiency for treating IBD. After oral administration, the pH-sensitive EL protected the CuS/DSF/EL/PVP against degradation by acidic gastric juices. Once the colon was reached, EL was dissolved, releasing DSF and Cu2+. Further, the main in vivo metabolite of DSF can bind to Cu2+ and form copper (II) N, N-diethyldithiocarbamate (CuET), which significantly alleviated acute colitis in mice. Notably, CuS/DSF/EL/PVP outperformed CuS/EL/PVP and DSF/EL/PVP nanoplatforms in reducing colonic pathology and improving the secretion of inflammation-related cytokines (such as IL-4 and IL-10) in the colonic mucosa. RNA-seq analysis revealed that the nanoplatform reduced colonic inflammation and promoted intestinal mucosal repair by upregulating C-type lectin receptor (CLR)-related genes and signaling pathways. Furthermore, CuS/DSF/EL/PVP showed potential for improving colitis Th1/Th17 cells through innate immunity stimulation, down-regulation of inflammatory cytokines, and upregulation of anti-inflammatory cytokines. Additionally, the intervention with CuS/DSF/EL/PVP led to increased intestinal flora diversity, decreased Escherichia-Shigella abundance, and elevated levels of short-chain fatty acid (SCFA)-producing bacteria Prevotella, Lactobacillus, and Bifidobacterium, indicating their potential to modulate the dysregulated intestinal flora and suppress inflammation. STATEMENT OF SIGNIFICANCE: Our study introduces the CuS/DSF/EL/PVP nanoplatform as a therapeutic strategy for treating inflammatory bowel disease (IBD). This approach demonstrates significant efficacy in targeting the colon and alleviating acute colitis in mice. It uniquely modulates gut immunity and microbiota, exhibiting a notable impact on inflammation-related cytokines and promoting intestinal mucosal repair. The nanoplatform's ability to regulate gut flora diversity, combined with its cost-effective and scalable production, positions it as a potentially transformative treatment for IBD, offering new avenues for personalized medical interventions.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要