Methylseleninic acid inhibits human glioma growth in vitro and in vivo by triggering ROS-dependent oxidative damage and apoptosis

Wang Chen, Pida Hao, Qile Song, Xiaotong Feng,Xuan Zhao, Jincheng Wu, Zixiang Gong, Jinli Zhang,Xiaoyan Fu,Xianjun Wang

Metabolic Brain Disease(2024)

引用 0|浏览3
暂无评分
摘要
Selenium-containing agents showed novel anticancer activity by triggering pro-oxidative mechanism. Studies confirmed that methylseleninic acid (MeSe) displayed broad-spectrum anti-tumor activity against kinds of human cancers. However, the anticancer effects and mechanism of MeSe against human glioma growth have not been explored yet. Herein, the present study showed that MeSeA dose-dependently inhibited U251 and U87 human glioma cells growth in vitro. Flow cytometry analysis indicated that MeSe induced significant U251 cells apoptosis with a dose-dependent manner, followed by the activation of caspase-7, caspase-9 and caspase-3. Immunofluorescence staining revealed that MeSe time-dependently caused reactive oxide species (ROS) accumulation and subsequently resulted in oxidative damage, as convinced by the increased phosphorylation level of Ser428-ATR, Ser1981-ATM, Ser15-p53 and Ser139-histone. ROS inhibition by glutathione (GSH) effectively attenuated MeSe-induced ROS generation, oxidative damage, caspase-3 activation and cytotoxicity, indicating that ROS was an upstream factor involved in MeSe-mediated anticancer mechanism in glioma. Importantly, MeSe administration in nude mice significantly inhibited glioma growth in vivo by inducing apoptosis through triggering oxidative damage. Taken together, our findings validated the possibility that MeSe as a selenium-containing can act as potential tumor chemotherapy agent for therapy of human glioma.
更多
查看译文
关键词
Selenium,Methylseleninic acid,Glioma,Reactive oxygen species,Oxidative damage,Apoptosis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要