Characterization, Anti-glycation, Anti-inflammation, and Lipase Inhibitory Properties of Rauvolfia vomitoria Leaf Extract: In Vitro and In Silico Evaluations for Obesity Treatment

Akpovwehwee A. Anigboro,Oghenetega J. Avwioroko, Omoerere Oborirhovo, Onoriode Akeghware,Ernest U. Durugbo,Augustine Apiamu, Victor I. Olaoye, Uchechukwu S. Ezealigo,Nyerhovwo J. Tonukari

Applied Biochemistry and Biotechnology(2024)

引用 0|浏览7
暂无评分
摘要
Pancreatic lipase (PLP) is an enzyme responsible for the catalytic hydrolysis of fats and its inhibition is relevant for obesity management. Side effects linked with orthodox inhibitors have, however, paved the way for an increased search for safe natural sources. The present study investigated the anti-glycation, anti-inflammatory, and anti-lipase properties of Rauvolfia vomitoria aqueous (ARV), ethanolic (ERV), and methanolic (MRV) leaf extracts coupled with the molecular interactions of selected bioactive compounds with PLP using in vitro and in silico techniques. Phytochemical constituents were characterized using spectroscopic techniques. Drug-likeness and chemical reactivity profile of selected bioactive compounds were analyzed using SwissADME and quantum chemical calculations. FT-IR and GC-MS affirmed the presence of phenolic compounds including 3-phenyl-2-ethoxypropylphthalimide and 5-methyl-2-phenyl-1H-indole. All extracts showed moderate anti-glycation, anti-inflammatory, and lipase inhibitory capacities relative to standard controls. However, MRV exhibited the highest lipase inhibition (IC50, 0.17 ± 0.01 mg/mL), using a mixed-inhibition pattern. MRV interaction with PLP resulted in decreased secondary structure components of PLP (α-sheet, β-turn). MRV compounds (MCP20, MCP28, etc.) exhibited low chemical hardness, EHOMO-ELUMO energy gap, and high chemical reactivity. Foremost MRV compounds obeyed Lipinski’s rule of five for drug-likeness and interacted with PHE-78 amongst others at PLP catalytic domain with high binding affinity (≥ − 9.3 kcal/mol). Pi-alkyl hydrophobic interaction and hydrogen bonding were predominantly involved. Our findings provide scientific insights into the ethnotherapeutic uses of R. vomitoria extracts for the management of obesity and related complications, plus useful information for optimizable drug-like candidates against obesity.
更多
查看译文
关键词
Rauvolfia vomitoria,Anti-obesity,Anti-glycation,Anti-inflammatory,Molecular docking
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要