Solitary cluster waves in periodic potentials: Formation, propagation, and soliton-mediated particle transport

arxiv(2024)

引用 0|浏览0
暂无评分
摘要
Transport processes in crowded periodic structures are often mediated by cooperative movements of particles forming clusters. Recent theoretical and experimental studies of driven Brownian motion of hard spheres showed that cluster-mediated transport in one-dimensional periodic potentials can proceed in form of solitary waves. We here give a comprehensive description of these solitons. Fundamental for our analysis is a static presoliton state, which is formed by a periodic arrangements of basic stable clusters. Their size follows from a geometric principle of minimum free space. Adding one particle to the presoliton state gives rise to solitons. We derive the minimal number of particles needed for soliton formation, number of solitons at larger particle numbers, soliton velocities and soliton-mediated particle currents. Incomplete relaxations of the basic clusters are responsible for an effective repulsive soliton-soliton interaction seen in measurements. Our results provide a theoretical basis for describing experiments on cluster-mediated particle transport in periodic potentials.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要