Hybrid Feedback Control for Global and Optimal Safe Navigation

CoRR(2024)

引用 0|浏览0
暂无评分
摘要
We propose a hybrid feedback control strategy that safely steers a point-mass robot to a target location optimally from all initial conditions in the n-dimensional Euclidean space with a single spherical obstacle. The robot moves straight to the target when it has a clear line-of-sight to the target location. Otherwise, it engages in an optimal obstacle avoidance maneuver via the shortest path inside the cone enclosing the obstacle and having the robot's position as a vertex. The switching strategy that avoids the undesired equilibria, leading to global asymptotic stability (GAS) of the target location, relies on using two appropriately designed virtual destinations, ensuring control continuity and shortest path generation. Simulation results illustrating the effectiveness of the proposed approach are presented.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要