Spatial Distribution of Inertial Particles in Turbulent Taylor-Couette Flow

Hao Jiang,Zhi-ming Lu,Bo-fu Wang, Xiao-hui Meng, Jie Shen,Kai Leong Chong

arxiv(2024)

引用 0|浏览1
暂无评分
摘要
This study investigates the spatial distribution of inertial particles in turbulent Taylor-Couette flow. Direct numerical simulations are performed using a one-way coupled Eulerian-Lagrangian approach, with a fixed inner wall Reynolds number of 2500 for the carrier flow, while the particle Stokes number varies from 0.034 to 1 for the dispersed phase. We first examine the issue of preferential concentration of particles near the outer wall region. Employing two-dimensional (2D) Voronoi analysis, we observe a pronounced particle clustering with increasing St, particularly evident in regions of low fluid velocity. Additionally, we investigate the concentration balance equation, inspired by the work of johnson et al.(2020), to examine particle radial distribution. We discern the predominant sources of influence, namely biased sampling, turbophoresis, and centrifugal effects. Across all cases, centrifugal force emerges as the primary driver, causing particle migration towards the outer wall. Biased sampling predominantly affects smaller inertial particles, driving them towards the inner wall due to sampling within Taylor rolls with inward radial velocity. Conversely, turbophoresis primarily impacts larger inertial particles, inducing migration towards both walls where turbulent intensity is weaker compared to the bulk. With the revealed physics, our work provides a basis for predicting and controlling particle movement and distribution in industrial applications.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要