Microscopic nonlinear optical response: Analysis and calculations with the Floquet-Bloch formalism

STRUCTURAL DYNAMICS-US(2024)

引用 0|浏览0
暂无评分
摘要
We analyze microscopic nonlinear optical response of periodic structures within the Floquet-Bloch formalism. The analysis is focused on the real-space distributions of optically induced charge and electron current density within the unit cell of a crystal. We demonstrate that the time-reversal symmetry of a crystal determines the phases of the temporal oscillations of these distributions. We further analyze their spatial symmetries and connection to macroscopic optical response. We illustrate our study with ab initio calculations that combine density functional theory with the Floquet-Bloch formalism. The calculations provide time-dependent optically induced charge distributions and electron current densities within the unit cells of a crystal with inversion symmetry MgO and a crystal without inversion symmetry GaAs in response to a strong-field excitation. The real-space, microscopic view on nonlinear optical response provides insightful information about the strong field-matter interaction.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要