Iron-decorated covalent organic framework as efficient catalyst for activating peroxydisulfate to degrade 2,4-dichlorophenol: Performance and mechanism insight.

Journal of colloid and interface science(2024)

引用 0|浏览0
暂无评分
摘要
Herein, a novel two-dimensional double-pore covalent organic framework (JLNU-305) was synthesized using N,N,N',N'-tetrakis(4-aminophenyl)-1,4-phenylenediamine (TAPD) and 2,2'-bipyridine-5,5'-dicarboxaldehyde (BPDA). The extended π-π conjugated structure and nitrogen-riched pyridine in JLNU-305 (JLNU = Jilin Normal University) provide abundant binding sites for Fe doping. The obtained JLNU-305-Fe exhibited high and recycled catalytic efficiency for peroxydisulfate (PDS) activation to completely degrade 10 mg/L 2,4-dichlorophenol (2,4-DCP) within 8 min. The JLNU-305-Fe/PDS system showed excellent catalytic activity and cyclic stability. The capture experiments and electron paramagnetic resonance (ESR) analysis indicated that the catalytic behavior of JLNU-305-Fe/PDS is contributed to the synergistic effect between free radicals and non-free radicals. It is the first time to activate PDS for covalent organic frameworks (COFs) being used to degrade 2,4-DCP, which has a great potential for development and practical application in related water environment remediation.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要