Icephobic Gradient Polymer Coatings Deposited via iCVD: A Novel Approach for Icing Control and Mitigation

Gabriel Hernandez Rodriguez, Mario Fratschko, Luca Stendardo,Carlo Antonini,Roland Resel,Anna Maria Coclite

ACS APPLIED MATERIALS & INTERFACES(2024)

引用 0|浏览1
暂无评分
摘要
Materials against ice formation and accretion are highly desirable for different industrial applications and daily activities affected by icing. Although several concepts have been proposed, no material has so far shown wide-ranging icephobic features, enabling durability and manufacturing on large scales. Herein, we present gradient polymers made of 1,3,5,7-tetravinyl-1,3,5,7-tetramethylcyclotetrasiloxane (V4D4) and 1H,1H,2H,2H-perfluorodecyl acrylate (PFDA) deposited in one step via initiated chemical vapor deposition (iCVD) as an effective coating to mitigate ice accretion and reduce ice adhesion. The gradient structures easily overcome adhesion, stability, and durability issues of traditional fluorinated coatings. The coatings show promising icephobic performance by reducing ice adhesion, depressing the freezing point, delaying drop freezing, and inhibiting ice nucleation and frost propagation. Icephobicity correlates with surface energy discontinuities at the surface plane resulting from the random orientation of the fluorinated groups of PFDA, as confirmed by grazing-incidence X-ray diffraction measurements. The icephobicity could be further improved by tuning the surface crystallinity rather than surface wetting, as samples with random crystal orientation show the lowest ice adhesion despite high contact angle hysteresis. The iCVD-manufactured coatings show promising results, indicating the potential for ice control on larger scales and various applications. [GRAPHICS] .
更多
查看译文
关键词
iCVD,icephobic,gradient polymer,coatings,anti-icing,icephobic surface design
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要