GrMoNAS: A granularity-based multi-objective NAS framework for efficient medical diagnosis

COMPUTERS IN BIOLOGY AND MEDICINE(2024)

引用 0|浏览2
暂无评分
摘要
Neural Architecture Search (NAS) has been widely applied to automate medical image diagnostics. However, traditional NAS methods require significant computational resources and time for performance evaluation. To address this, we introduce the GrMoNAS framework, designed to balance diagnostic accuracy and efficiency using proxy datasets for granularity transformation and multi -objective optimization algorithms. The approach initiates with a coarse granularity phase, wherein diverse candidate neural architectures undergo evaluation utilizing a reduced proxy dataset. This initial phase facilitates the swift and effective identification of architectures exhibiting promise. Subsequently, in the fine granularity phase, a comprehensive validation and optimization process is undertaken for these identified architectures. Concurrently, employing multiobjective optimization and Pareto frontier sorting aims to enhance both accuracy and computational efficiency simultaneously. Importantly, the GrMoNAS framework is particularly suitable for hospitals with limited computational resources. We evaluated GrMoNAS in a range of medical scenarios, such as COVID-19, Skin cancer, Lung, Colon, and Acute Lymphoblastic Leukemia diseases, comparing it against traditional models like VGG16, VGG19, and recent NAS approaches including GA -CNN, EBNAS, NEXception, and CovNAS. The results show that GrMoNAS achieves comparable or superior diagnostic precision, significantly enhancing diagnostic efficiency. Moreover, GrMoNAS effectively avoids local optima, indicating its significant potential for precision medical diagnosis.
更多
查看译文
关键词
NAS,Granularity transformation,Multi -objective optimization,Medical diagnosis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要