Conformational Isomerization Effect on Singlet/Triplet Energy Consumption Process of Thermally Activated Delayed Fluorescence Molecules with Aggregation Induced Emission: A QM/MM Study

JOURNAL OF PHYSICAL CHEMISTRY LETTERS(2024)

引用 0|浏览4
暂无评分
摘要
Thermally activated delayed fluorescence (TADF) molecules with aggregation-induced emission (AIE) properties hold tremendous potential in biomedical sensing/imaging and telecommunications. In this study, a multiscale method combined with thermal vibration correlation function (TVCF) theory is used to investigate the photophysical properties of the novel TADF molecule CNPy-SPAC in toluene and crystal and amorphous states. In the crystal state, an increase in radiative rates and a decrease in nonradiative rates lead to AIE. Additionally, conformational isomerization effects result in significantly different luminescent efficiencies between the two crystal structures. Furthermore, the isomerization effect allows for the coexistence of three configurations in the amorphous state. Among them, the non-TADF quasi-axial (Qa) configuration may facilitate energy transfer to the TADF-characteristic quasi-equal/quasi-equal-H (Qe/Qe-H) configurations, enhancing AIE. Moreover, the Qa configuration enables rapid electron transport, offering the potential for self-doped devices. Our work elucidates a new mechanism for the isomerization effect in AIE-TADF molecules.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要