A Comprehensive Material Model for the Super-Duplex Stainless Steel SAF2507 in a Welding Environment

Maximilian Prunbauer,Peter Raninger,Werner Ecker, Martin Rester,Reinhold Ebner

METALS(2024)

引用 0|浏览0
暂无评分
摘要
The aim of this work is to describe a reliable methodology for determining parameters of a material model suitable for implementation in a welding simulation using the finite element method (FEM). The adopted methodology employs a multi-scale approach integrating a microstructure evolution model, a representative volume element (RVE) calibrated through experimental methods, including a thermal-mechanical simulator, and electron backscatter diffraction (EBSD) experiments. The result is a complete material model, which covers thermal, mechanical and metallurgical material models for SAF2507 (EN 1.4410), that shows promising results and was successfully implemented in finite element (FE) code. A direct comparison of experimental and calculated results shows a deviation of up to 12% for the phase fraction of austenite and 25% for the mean grain diameter of ferrite.
更多
查看译文
关键词
super-duplex steel,welding,material modeling,phase transformation,stresses
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要