Spatiotemporal observation reveals metastatic tumor-driven vascular remodeling as a potential route to polyclonal colonization

biorxiv(2024)

引用 0|浏览1
暂无评分
摘要
Polyclonal metastasis, which arises from clusters of circulating tumor cells, promotes metastasis development and has become a major target of metastasis inhibition. Mouse experiments have clearly verified that nonmetastatic and metastatic tumors coexist and form metastatic nests, but the detailed mechanism of extravasation remains unclear. We established a three-dimensional tumor microvessel model to investigate extravasation between nonmetastatic tumors, metastatic tumors, and mosaic tumor organoids in a mixed state by time-lapse imaging and to determine the sequential steps of the extravasation of tumor cells via vascular remodeling. This comparison revealed a new concept of extravascular invasion via vascular remodeling in metastatic carcinoma. Furthermore, the involvement of liver host cells, the hepatic stellate cells, demonstrated an interaction with metastatic cells to facilitate metastatic foci formation. Moreover, Adam28 was highly expressed exclusively in metastatic tumor cells, suggesting its involvement in vascular remodeling. These results demonstrate the ability of metastatic tumor cells for extravasation in polyclonal metastasis, which may lead to the development of new therapeutic targets. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要