Observation of temporal topological boundary states of light in a momentum bandgap

arxiv(2024)

引用 0|浏览3
暂无评分
摘要
Topological phases have prevailed across diverse disciplines, spanning electronics, photonics, and acoustics. Hitherto, the understanding of these phases has centred on energy (frequency) bandstructures, showcasing topological boundary states at spatial interfaces. Recent strides have uncovered a unique category of bandstructures characterized by gaps in momentum, referred to as momentum bandgaps or k gaps, notably driven by breakthroughs in photonic time crystals. This discovery hints at abundant topological phases defined within momentum bands, alongside a wealth of topological boundary states in the time domain. Here, we report the first experimental observation of k-gap topology in a large-scale optical temporal synthetic lattice, manifesting as temporal topological boundary states. These boundary states are uniquely situated at temporal interfaces between two subsystems with distinct k-gap topology. Counterintuitively, despite the exponential amplification of k-gap modes within both subsystems, these topological boundary states exhibit decay in both temporal directions. Our findings mark a significant pathway for delving into k gaps, temporal topological states, and time-varying physics.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要