Dynamic Reconstruction of Two-Dimensional Defective Bi Nanosheets for Efficient Electrocatalytic Urea Synthesis

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION(2024)

引用 0|浏览1
暂无评分
摘要
Catalyst surface dynamics drive the generation of active species for electrocatalytic reactions. Yet, the understanding of dominant site formation and reaction mechanisms is limited. In this study, we thoroughly investigate the dynamic reconstruction of two-dimensional defective Bi nanosheets from exfoliated Bi2Se3 nanosheets under electrochemical CO2 and nitrate (NO3-) reduction conditions. The ultrathin Bi2Se3 nanosheets obtained by NaBH4-assisted cryo-mediated liquid-phase exfoliation are more easily reduced and reconstructed to Bi nanosheets with high-density grain boundaries (GBs; GB-rich Bi). The reconstructed GB-rich Bi catalyst affords a remarkable yield rate of 4.6 mmol h-1 mgcat.-1 and Faradaic efficiency of 32 % for urea production at -0.40 V vs. RHE. Notably, this yield rate is 2 and 8.2 times higher than those of the low-GB Bi and bulk Bi catalysts, respectively. Theoretical analysis demonstrates that the GB sites significantly reduce the *CO and *NH2 intermediate formation energy and C-N coupling energy barrier, enabling selective urea electrosynthesis on the GB-rich Bi catalyst. This work will trigger further research into the structure-activity interplay in dynamic processes using in situ techniques. Ultrathin Bi2Se3 nanosheets were reconstructed in situ to defective Bi nanosheets, forming rich grain boundaries that were conducive to the C-N coupling reaction for CO2 and NO3- reduction to produce urea.+ image
更多
查看译文
关键词
two-dimensional Bi nanosheets,dynamic reconstruction,grain boundary,C-N coupling,urea electrosynthesis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要