Investigation on Contact Properties of 2D van der Waals Semimetallic 1T-TiS2/MoS2 Heterojunctions.

ACS applied materials & interfaces(2024)

引用 0|浏览1
暂无评分
摘要
Two-dimensional transition metal dichalcogenides (2D TMDCs) are considered promising alternatives to Si as channel materials because of the possibility of retaining their superior electronic transport properties even at atomic body thicknesses. However, the realization of high-performance 2D TMDC field-effect transistors remains a challenge owing to Fermi-level pinning (FLP) caused by gap states and the inherent high Schottky barrier height (SBH) within the metal contact and channel layer. This study demonstrates that high-quality van der Waals (vdW) heterojunction-based contacts can be formed by depositing semimetallic TiS2 onto monolayer (ML) MoS2. After confirming the successful formation of a TiS2/ML MoS2 heterojunction, the contact properties of vdW semimetal TiS2 were thoroughly investigated. With clean interfaces of the TiS2/ML MoS2 heterojunctions, atomic-layer-deposited TiS2 can induce gap-state saturation and suppress FLP. Consequently, compared with conventional evaporated metal electrodes, the TiS2/ML MoS2 heterojunctions exhibit a lower SBH of 8.54 meV and better contact properties. This, in turn, substantially improves the overall performance of the device, including its on-current, subthreshold swing, and threshold voltage. Furthermore, we believe that our proposed strategy for vdW-based contact formation will contribute to the development of 2D materials used in next-generation electronics.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要