mRNA biomarkers sensitive and specific to micro-dose erythropoietin treatment at sea level and altitude

DRUG TESTING AND ANALYSIS(2024)

引用 0|浏览0
暂无评分
摘要
Recombinant human erythropoietin (rhEPO) is prohibited by the World Anti-Doping Agency. rhEPO abuse can be indirectly detected via the athlete biological passport (ABP). However, altitude exposure challenges interpretation of the ABP. This study investigated whether 5'-aminolevulinate synthase 2 (ALAS2) and carbonic anhydrase 1 (CA1) in capillary dried blood spots (DBSs) are sensitive and specific markers of rhEPO treatment at altitude. ALAS2 and CA1 expression was monitored in DBS collected weekly before, during, and after a 3-week period at sea level or altitude. Participants were randomly assigned to receive 20 IU kg bw(-1 )epoetin alpha (rhEPO) or placebo injections every second day for 3 weeks while staying at sea level (rhEPO, n = 25; placebo, n = 9) or altitude (rhEPO, n = 12; placebo, n = 27). ALAS2 and CA1 expression increased up to 300% and 200%, respectively, upon rhEPO treatment at sea-level and altitude (P-values <0.05). When a blinded investigator interpreted the results, ALAS2 and CA1 expression had a sensitivity of 92%. Altitude did not confound the interpretation. Altitude affected ALAS2 and CA1 expression less than actual ABP markers when compared between sea level and altitude results. An individual athlete passport-like approach simulation confirmed the biomarker potential of ALAS2 and CA1. ALAS2 and CA1 were sensitive and specific biomarkers of micro-dose rhEPO treatment at sea level and altitude. Altitude seemed less a confounding factor for these biomarkers, especially when they are combined. Thus, micro-dose rhEPO injections can be detected in a longitudinal blinded setting using mRNA biomarkers in DBS.
更多
查看译文
关键词
altitude,doping,RNA biomarkers
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要