Differential cannabinoid-like effects and pharmacokinetics of ADB-BICA, ADB-BINACA, ADB-4en-PINACA and MDMB-4en-PINACA in mice: A comparative study.

Fenghua Zhou, Xiaoli Wang, Sujun Tan,Yan Shi, Bing Xie,Ping Xiang,Bin Cong,Chunling Ma,Di Wen

Addiction biology(2024)

引用 0|浏览0
暂无评分
摘要
Despite synthetic cannabinoids' (SCs) prevalent use among humans, these substances often lack comprehensive pharmacological data, primarily due to their rapid emergence in the market. This study aimed to discern differences and causal factors among four SCs (ADB-BICA, ADB-BINACA, ADB-4en-PINACA and MDMB-4en-PINACA), with respect to locomotor activity, body temperature and nociception threshold. Adult male C57BL/6 mice received intraperitoneal injections of varying doses (0.5, 0.1 and 0.02 mg/kg) of these compounds. Three substances (including ADB-BINACA, ADB-4en-PINACA and MDMB-4en-PINACA) demonstrated dose- and time-dependent hypolocomotive and hypothermic effects. Notably, 0.1 mg/kg MDMB-4en-PINACA exhibited analgesic properties. However, ADB-BICA did not cause any effects. MDMB-4en-PINACA manifested the most potent and sustained effects, followed by ADB-4en-PINACA, ADB-BINACA and ADB-BICA. Additionally, the cannabinoid receptor 1 (CB1R) antagonist AM251 suppressed the effects induced by acute administration of the substances. Analysis of molecular binding configurations revealed that the four SCs adopted a congruent C-shaped geometry, with shared linker binding pockets conducive to robust steric interaction with CB1R. Essential residues PHE268 , PHE200 and SER173 within CB1R were identified as pivotal contributors to enhancing receptor-ligand associations. During LC-MS/MS analysis, 0.5 mg/kg MDMB-4en-PINACA exhibited the highest plasma concentration and most prolonged detection window post-administration. The study of SCs' pharmacological and pharmacokinetic profiles is crucial for better understanding the main mechanisms of cannabinoid-like effects induced by SCs, interpreting clinical findings related to SC uses and enhancing SCs risk awareness.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要