Human gut microbiota fermentation of cooked eggplant, garlic, and onion supports distinct microbial communities

FOOD & FUNCTION(2024)

引用 0|浏览2
暂无评分
摘要
Heating and cooking vegetables not only enhances their palatability but also modifies their chemical structure, which in turn might affect their fermentation by resident gut microbes. Three commonly consumed vegetables that are known to undergo chemical browning, also known as Maillard reaction, during cooking - eggplant, garlic, and onion - were each fried, grilled, or roasted. The cooked vegetables were then subjected to an in vitro digestion-fermentation process aimed to simulate the passage of food through the human oro-gastro-intestinal tract. In the last step, the undigested fractions of these foods were anaerobically fermented by the complex human gut microbiota. We assessed the structure of microbial communities maintained on each cooked vegetable by high-throughput 16S rRNA gene amplicon sequencing, measured the levels of furosine, a chemical marker of the Maillard browning reaction, by HPLC, and determined the antioxidant capacities in all samples with ABTS and FRAP methods. Overall, vegetable type had the largest, statistically significant, effect on the microbiota structure followed by the cooking method. Onion fermentation supported a more beneficial community including an expansion of Bifidobacterium members and inhibition of Enterobacteriaceae. Fermentation of cooked garlic promoted Faecalibacterium growth. Among cooking methods, roasting led to a much higher ratio of beneficial-to-detrimental microbes in comparison with grilling and frying, possibly due to the exclusion of any cooking oil in the cooking process. Eggplant, garlic, and onion were each fried, grilled, or roasted, and were subjected to an in vitro digestion-fermentation process. Vegetable type had the largest effect on the gut microbiota structure. Oonion supported a more beneficial community.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要