Tuning the bandstructure of electrons in a two-dimensional artificial electrostatic crystal in GaAs quantum wells

arxiv(2024)

引用 0|浏览2
暂无评分
摘要
The electronic properties of solids are determined by the crystal structure and interactions between electrons, giving rise to a variety of collective phenomena including superconductivity, strange metals and correlated insulators. The mechanisms underpinning many of these collective phenomena remain unknown, driving interest in creating artificial crystals which replicate the system of interest while allowing precise control of key parameters. Cold atoms trapped in optical lattices provide great flexibility and tunability [1, 2], but cannot replicate the long range Coulomb interactions and long range hopping that drive collective phenomena in real crystals. Solid state approaches support long range hopping and interactions, but previous attempts with laterally patterned semiconductor systems were not able to create tunable low disorder artificial crystals, while approaches based on Moire superlattices in twisted two-dimensional (2D) materials [3, 4] have limited tunability and control of lattice geometry. Here we demonstrate the formation of highly tunable artificial crystals by superimposing a periodic electrostatic potential on the 2D electron gas in an ultrashallow (25 nm deep) GaAs quantum well. The 100 nm period artificial crystal is identified by the formation of a new bandstructure, different from the original cubic crystal and unique to the artificial triangular lattice: transport measurements show the Hall coefficient changing sign as the chemical potential sweeps through the artificial bands. Uniquely, the artificial bandstructure can be continuously tuned from parabolic free-electron bands into linear graphene-like and flat kagome-like bands in a single device. This approach allows the formation arbitrary geometry 2D artificial crystals, opening a new route to studying collective quantum states.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要