# Odd Cycle Transversal on P_5-free Graphs in Polynomial Time

CoRR（2024）

摘要

An independent set in a graph G is a set of pairwise non-adjacent vertices. A
graph G is bipartite if its vertex set can be partitioned into two
independent sets. In the Odd Cycle Transversal problem, the input is a graph
G along with a weight function w associating a rational weight with each
vertex, and the task is to find a smallest weight vertex subset S in G such
that G - S is bipartite; the weight of S, w(S) = ∑_v∈ S w(v). We
show that Odd Cycle Transversal is polynomial-time solvable on graphs excluding
P_5 (a path on five vertices) as an induced subgraph. The problem was
previously known to be polynomial-time solvable on P_4-free graphs and
NP-hard on P_6-free graphs [Dabrowski, Feghali, Johnson, Paesani, Paulusma
and Rzążewski, Algorithmica 2020]. Bonamy, Dabrowski, Feghali, Johnson
and Paulusma [Algorithmica 2019] posed the existence of a polynomial-time
algorithm on P_5-free graphs as an open problem, this was later re-stated by
Rzążewski [Dagstuhl Reports, 9(6): 2019] and by Chudnovsky, King,
Pilipczuk, Rzążewski, and Spirkl [SIDMA 2021], who gave an algorithm with
running time n^O(√(n)).

更多查看译文

AI 理解论文

溯源树

样例

生成溯源树，研究论文发展脉络

Chat Paper

正在生成论文摘要