The boundary of cosmic filaments

arxiv(2024)

引用 0|浏览11
暂无评分
摘要
For decades, the boundary of cosmic filaments have been a subject of debate. In this work, we determine the physically-motivated radii of filaments by constructing stacked galaxy number density profiles around the filament spines. We find that the slope of the profile changes with distance to the filament spine, reaching its minimum at approximately 1 Mpc at z = 0 in both state-of-the-art hydrodynamical simulations and observational data. This can be taken as the average value of the filament radius. Furthermore, we note that the average filament radius rapidly decreases from z = 4 to z = 1, and then slightly increases. Moreover, we find that the filament radius depends on the filament length, the distance from connected clusters, and the masses of the clusters. These results suggest a two-phase formation scenario of cosmic filaments. The filaments experience rapid contraction before z = 1, but their density distribution has remained roughly stable since then. The subsequent mass transport along the filaments to the connected clusters is likely to have contributed to the formation of the clusters themselves.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要