Assessing PIP and sGDML Potential Energy Surfaces for H3O2-

arxiv(2024)

引用 0|浏览4
暂无评分
摘要
Here we assess two machine-learned potentials, one using the symmetric gradient domain machine learning (sGDML) method and one based on permutationally invariant polynomials (PIPs). These are successors to a PIP potential energy surface (PES) reported in 2004. We describe the details of both fitting methods and then compare the two PESs with respect to precision, properties, and speed of evaluation. While the precision of the potentials is similar, the PIP PES is much faster to evaluate for energies and energies plus gradient than the sGDML one. Diffusion Monte Carlo calculations of the ground vibrational state, using both potentials, produce similar large anharmonic downshift of the zero-point energy compared to the harmonic approximation the PIP and sGDML potentials. The computational time for these calculations using the sGDML PES is roughly 300 times greater than using the PIP one.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要