A Raman topography imaging method toward assisting surgical tumor resection

Alexander Czaja, Alice J. Jiang, Matt Zacchary Blanco,Olga E. Eremina,Cristina Zavaleta

npj Imaging(2024)

引用 0|浏览1
暂无评分
摘要
Achieving complete tumor resection upon initial surgical intervention can lead to better patient outcomes by making adjuvant treatments more efficacious and reducing the strain of repeat surgeries. Complete tumor resection can be difficult to confirm intraoperatively. Methods like touch preparation (TP) have been inconsistent for detecting residual malignant cell populations, and fatty specimens like breast cancer lumpectomies are too fatty to process for rapid histology. We propose a novel workflow of immunostaining and topographic surface imaging of freshly excised tissue to ensure complete resection using highly sensitive and spectrally separable surface-enhanced Raman scattering nanoparticles (SERS NPs) as the targeted contrast agent. Biomarker-targeting SERS NPs are ideal contrast agents for this application because their sensitivity enables rapid detection, and their narrow bands enable extensive intra-pixel multiplexing. The adaptive focus capabilities of an advanced Raman instrument, combined with our rotational accessory device for exposing each surface of the stained specimen to the objective lens, enable topographic mapping of complete excised specimen surfaces. A USB-controlled accessory for a Raman microscope was designed and fabricated to enable programmatic and precise angular manipulation of specimens in concert with instrument stage motions during whole-surface imaging. Specimens are affixed to the accessory on an anti-slip, sterilizable rod, and the tissue surface exposed to the instrument is adjusted on demand using a programmed rotating stepper motor. We demonstrate this topographic imaging strategy on a variety of phantoms and preclinical tissue specimens. The results show detail and texture in specimen surface topography, orientation of findings and navigability across surfaces, and extensive SERS NP multiplexing and linear quantitation capabilities under this new Raman topography imaging method. We demonstrate successful surface mapping and recognition of all 26 of our distinct SERS NP types along with effective deconvolution and localization of randomly assigned NP mixtures. Increasing NP concentrations were also quantitatively assessed and showed a linear correlation with Raman signal with an R 2 coefficient of determination of 0.97. Detailed surface renderings color-encoded by unmixed SERS NP abundances show a path forward for content-rich, interactive surgical margin assessment.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要