A Comparative Analysis of Hybrid-Quantum Classical Neural Networks

arxiv(2024)

引用 0|浏览0
暂无评分
摘要
Hybrid Quantum-Classical Machine Learning (ML) is an emerging field, amalgamating the strengths of both classical neural networks and quantum variational circuits on the current noisy intermediate-scale quantum devices. This paper performs an extensive comparative analysis between different hybrid quantum-classical machine learning algorithms, namely Quantum Convolution Neural Network, Quanvolutional Neural Network and Quantum ResNet, for image classification. The experiments designed in this paper focus on different Quantum ML (QML) algorithms to better understand the accuracy variation across the different quantum architectures by implementing interchangeable quantum circuit layers, varying the repetition of such layers and their efficient placement. Such variations enable us to compare the accuracy across different architectural permutations of a given hybrid QML algorithm. The performance comparison of the hybrid models, based on the accuracy, provides us with an understanding of hybrid quantum-classical convergence in correlation with the quantum layer count and the qubit count variations in the circuit.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要