Performance of public drinking water purifiers in control of trihalomethanes, antibiotics and antibiotic resistance genes.

Liangyu Zhang, Wenjie Cui,Hongyan Zhai,Shengzi Cheng, Wenling Wu

Chemosphere(2024)

引用 0|浏览2
暂无评分
摘要
Point-of-use water purifiers are widely applied as a terminal treatment device to produce drinking water with high quality. However, concerns are raised regarding low efficiency in eliminating emerging organic pollutants. To enhance our understanding of the reliability and potential risks of water purifiers, the removal of trihalomethanes, antibiotics, and antibiotic resistance genes (ARGs) in four public water purifiers was investigated. In the four public water purifiers in October and November, the removal efficiencies of trichloromethane (TCM) and bromodichloromethane (BDCM) were 15%-69% (averagely 37%) and 6%-44% (averagely 23%). The levels of TCM and BDCM were lowered by all water purifiers in October and November, but accelerated in effluent compared to the influent in one public water purifier in December. The removal efficiencies of twelve antibiotics greatly varied with species and time. Out of twelve sampling cases, the removal efficiencies of total antibiotics were 25%-75% in ten cases. In the other two cases, very low removal efficiency (6%) or higher levels of antibiotics present in effluent compared to the influent were observed. Two public water purifiers effectively remove ARGs from water, with log removal rates of 0.45 log-3.89 log. However, in the other two public water purifiers, the ARG abundance accidently increased in the effluents. Overall, public water purifiers were more effective in removing antibiotics and ARGs compared to household water purifiers, but less or equally effective in removing trihalomethanes. Both public and household water purifiers could be contaminated and release the accumulated micro-pollutants or biofilm-related pollutants into effluent. The production frequency and standing time of water within water purifiers can impact the internal contamination and purification efficacy.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要