18F-FDG PET/CT-based radiomics model for predicting the degree of pathological differentiation in non-small cell lung cancer: a multicentre study

F. Liu, Z. Xiang,Q. Li,X. Fang, J. Zhou, X. Yang, H. Lin, Q. Yang

CLINICAL RADIOLOGY(2024)

引用 0|浏览0
暂无评分
摘要
AIM: To explore the value of 2-[18F]-fluoro-2-deoxy-D-glucose (FDG) positron-emission tomography (PET)/computed tomography (CT)-based radiomics model for predicting the degree of pathological differentiation in non-small-cell lung cancer (NSCLC).MATERIALS AND METHODS: Clinical characteristics of 182 NSCLC patients from four centres were collected, and radiomics features were extracted from 18F-FDG PET/CT images. Three logistic regression prediction models were established: clinical model; radiomics model; and nomogram combining radiomics signatures and clinical features. The predictive ability of the models was assessed using receiver operating characteristics curve analysis. RESULTS: Patients from centre 1 were assigned randomly to the training and internal validation cohorts (7:3 ratio); patients from centres 2-4 served as the external validation cohort. The area under the curve (AUC) values for the clinical model in the training, internal validation, and external validation cohort were 0.74 (95% confidence interval [CI] = 0.64-0.84), 0.64 (95% CI = 0.46-0.81), and 0.74 (95% CI = 0.60-0.88), respectively. In the training (AUC: 0.84 [95% CI = 0.77-0.92]), internal validation (AUC: 0.81 [95% CI = 0.67-0.95]), and external validation cohorts (AUC: 0.74 [95% CI = 0.58-0.89]), the radiomics model showed good predictive ability for differentiation. Compared to the clinical and radiomics models, the nomogram has relatively better diagnostic performance, and the AUC values for nomogram in the training, internal validation, and external validation cohort were 0.86 (95% CI = 0.78-0.93), 0.83 (95% CI = 0.70-0.96), and 0.77 (95% CI = 0.62-0.92), respectively.CONCLUSIONS: The 18F-FDG PET/CT-based radiomics model showed good ability for predicting the degree of differentiation of NSCLC. The nomogram combining the radiomics signature and clinical features has relatively better diagnostic performance. (c) 2023 Published by Elsevier Ltd on behalf of The Royal College of Radiologists.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要