Development of a 3D-printable matrix using cellulose microfibrils/guar gum-based hydrogels and its post-printing antioxidant activity

INTERNATIONAL JOURNAL OF BIOPRINTING(2024)

引用 0|浏览0
暂无评分
摘要
A biomaterial ink suitable for three-dimensional (3D) printing was developed using cellulose microfibrils (CMFs, 1% w/v) and guar gum (1-7 g/100 mL CMFs), and the post-printing stability and antioxidant functionality of the borax-treated construct were investigated. Rheological analysis, Fourier transform infrared spectrometry, X-ray diffractometry, and scanning electron microscopy revealed the suitability of the two polymers to form an interpenetrating composite hydrogel that would facilitate printability. The produced composite hydrogel showed good structural, morphological, thermal, and textural properties. CMFs with 5% guar gum showing optimal surface properties and rheological properties were printed with the least dimensional errors at 50% infill density, 10 mm/s printing speed, 0.8 mm nozzle diameter, and 0.5 mm layer height. The treatment with borax showed good shape fidelity during 12 h storage. The treated construct also showed considerably increased mechanical properties and antioxidant activities in comparison with the untreated construct. A stable 3D construct suitable for a variety of applications could be produced using CMFs and guar gum-based ink.
更多
查看译文
关键词
Cellulose microfibril,Guar gum,Hydrogel,3D printing,Post-printing,Antioxidant activity
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要