Atmospheric Metallicity and C/O of HD 189733 b from High-resolution Spectroscopy

ASTRONOMICAL JOURNAL(2024)

引用 0|浏览4
暂无评分
摘要
We present high-resolution K-band emission spectra of the quintessential hot Jupiter HD 189733 b from the Keck Planet Imager and Characterizer. Using a Bayesian retrieval framework, we fit the dayside pressure-temperature profile, orbital kinematics, mass-mixing ratios of H2O, CO, CH4, NH3, HCN, and H2S, and the (CO)-C-13/(CO)-C-12 ratio. We measure mass fractions of logH(2)O = -2.0(-0.4)(+0.4) and logCO = -2.2(-0.5)(+0.5), and place upper limits on the remaining species. Notably, we find logCH(4) < -4.5 at 99% confidence, despite its anticipated presence at the equilibrium temperature of HD 189733 b assuming local thermal equilibrium. We make a tentative (similar to 3 sigma) detection of (CO)-C-13, and the retrieved posteriors suggest a C-12/C-13 ratio similar to or substantially less than the local interstellar value. The possible C-13 enrichment would be consistent with accretion of fractionated material in ices or in the protoplanetary disk midplane. The retrieved abundances correspond to a substantially substellar atmospheric C/O = 0.3 +/- 0.1, while the carbon and oxygen abundances are stellar to slightly superstellar, consistent with core-accretion models which predict an inverse correlation between C/O and metallicity. The specific combination of low C/O and high metallicity suggests significant accretion of solid material may have occurred late in the formation process of HD 189733 b.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要