Extracellular Vesicle Clicking on Osteoimplants Through Biomimetic Molecular Adhesion Enables Immune-Enhanced Osseointegration in Diabetics

ADVANCED FUNCTIONAL MATERIALS(2024)

引用 0|浏览1
暂无评分
摘要
Extracellular vesicles (EVs) derived from differentiating induced stem cells maintain their original stemness and differentiating trends and possess strong immunoregulatory capability. Biomaterials equipped with EVs are very promising in regenerative medicine. However, surface EV-decoration on osteoimplants remains a challenge, due to the complexity of traditional molecular conjugations and the fragility of EVs. Here, mussel-like molecular adhesion is combined with bioorthogonal click conjugation to introduce EVs on titanium (Ti) implants. The biomimetic adhesion and clickable molecular linkage allow mild and stable tethering of pre-osteogenic mesenchymal stem cell (MSC)-derived EVs on Ti implants. EV-decorated implants exhibit significantly enhanced osseointegration on the bone-implant surface under diabetic conditions, promoting increased expression of osteogenic genes. Modified surfaces impelled phenotypic alterations in macrophage polarization via multi-pathway regulation, decreasing proinflammatory M1 macrophage formation, which can lead to the promotion of surface osteogenesis. On Ti rods implanted in a diabetic rat model, EV coating inhibited M1macrophages around the prosthesis, resulting in satisfactory long-term osseointegration. This study offers a new perspective to represent a simple and effective means for surface EV decoration, providing an osteoimmunomodulatory effect to enhance the diabetic osseointegration of implants.
更多
查看译文
关键词
bone implants,click chemistry,diabetes mellitus,extracellular vesicles,immunomodulation,mussel-inspired adhesions,osseointegration
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要