N-doped TiO2/Ti3C2-driven self-photocatalytic molecularly imprinted ECL sensor for sensitive and steady detection of dexamethasone

BIOSENSORS & BIOELECTRONICS(2024)

引用 0|浏览0
暂无评分
摘要
The conventional luminol-based electrochemiluminescence (ECL) biosensor suffers from hampered signal stability due to the self-decomposition of the H2O2 co-reactant. Here, we propose an N-doped TiO2/Ti3C2 heterojunction driven self-photocatalytic platform for ECL signal amplification and then combine it with molecular imprinting technology for sensitive and steady detection of dexamethasone (DXM). Unlike traditional cases involving specific catalysts or external electron injection, the initial luminescence of luminol in this new system is utilized as the excitation light of N-doped TiO2/Ti3C2 photocatalyst to promote the conversation of dissolved oxygen to H2O2, supplying more co-reactants to improve ECL of luminol in turn. Thanks to the heterojunction and self-photocatalytic cyclic amplification, this molecularly imprinted ECL sensor exhibits a wide linear range (1.0 x 10- 6-1.0 x 101 mu g mL-1) and a low detection limit, as well as excellent anti-interference capability, sensitivity, and stability. This work contributes to more reliable and steady detection of DXM and brings new insights into developing exogenous co-reactant-free self-enhancement ECL models for biosensor applications.
更多
查看译文
关键词
Dexamethasone,Self-photocatalytic,Electrochemiluminescence sensor,Molecular imprinting,TiO2
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要