Exploring the impact of vibrational cavity coupling strength on ultrafast CN plus c-C6H12 reaction dynamics

NANOPHOTONICS(2024)

引用 0|浏览0
暂无评分
摘要
Molecular polaritons, hybrid light-matter states resulting from strong cavity coupling of optical transitions, may provide a new route to guide chemical reactions. However, demonstrations of cavity-modified reactivity in clean benchmark systems are still needed to clarify the mechanisms and scope of polariton chemistry. Here, we use transient absorption to observe the ultrafast dynamics of CN radicals interacting with a cyclohexane (c-C6H12) and chloroform (CHCl3) solvent mixture under vibrational strong coupling of a C-H stretching mode of c-C6H12. By modulating the c-C6H12:CHCl3 ratio, we explore how solvent complexation and hydrogen (H)-abstraction processes proceed under collective cavity coupling strengths ranging from 55 to 85 cm(-1). Reaction rates remain unchanged for all extracavity, on-resonance, and off-resonance cavity coupling conditions, regardless of coupling strength. These results suggest that insufficient vibrational cavity coupling strength may not be the determining factor for the negligible cavity effects observed previously in H-abstraction reactions of CN with CHCl3.
更多
查看译文
关键词
polariton chemistry,vibrational strong coupling,hydrogen abstraction reactions,ultrafast transient absorption
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要