Catalytic Ozonation of Ethyl Acetate with Assistance of MMn2O4 (M = Cu, Co, Ni and Mg) Catalysts through In Situ DRIFTS Experiments and Density Functional Theory Calculations

CATALYSTS(2023)

引用 0|浏览3
暂无评分
摘要
Catalytic ozonation, with enhanced efficiency and reduced byproduct formation at lower temperatures, proved to be efficient in ethyl acetate (EA) degradation. In this work, MMn2O4 (M = Cu, Co, Ni, Mg) catalysts were prepared via a redox-precipitation method to explore the catalytic ozonation mechanism of EA. Among all the catalysts, CuMn exhibited superior catalytic activity at 120 degrees C, achieving nearly 100% EA conversion and above 90% CO2 selectivity with an O3/EA molar ratio of 10. Many characterizations were conducted, such as SEM, BET and XPS, for revealing the properties of the catalysts. Plentiful active sites, abundant oxygen vacancies, more acid sites and higher reduction ability contributed to the excellent performance of CuMn. Moreover, the addition of NO induced a degree of inhibition to EA conversion due to its competition for ozone. H2O had little effect on the catalytic ozonation of CuMn, as the conversion of EA could reach a stable platform at similar to 89% even with 5.0 vol.% of H2O. The presence of SO2 usually caused catalyst deactivation. However, the conversion could gradually recover once SO2 was discontinued due to the reactivation of ozone. A detailed reaction mechanism for catalytic ozonation was proposed via in situ DRIFTS measurements and DFT calculations.
更多
查看译文
关键词
ethyl acetate,low temperature,catalytic ozonation,MnOx,reaction mechanism
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要