Exploring supersymmetric wormholes in N=2 SYK with chords

JOURNAL OF HIGH ENERGY PHYSICS(2023)

引用 0|浏览0
暂无评分
摘要
A feature the N = 2 supersymmetric Sachdev-Ye-Kitaev (SYK) model shares with extremal black holes is an exponentially large number of ground states that preserve supersymmetry. In fact, the dimension of the ground state subsector is a finite fraction of the total dimension of the SYK Hilbert space. This fraction has a remarkably simple bulk interpretation as the probability that the zero-temperature wormhole - a supersymmetric Einstein-Rosen bridge - has vanishing length. Using chord techniques, we compute the zero-temperature Hartle-Hawking wavefunction; the results reproduce the ground state count obtained from boundary index computations, including non-perturbative corrections. Along the way, we improve the construction [1] of the super-chord Hilbert space and show that the transfer matrix of the empty wormhole enjoys an enhanced N = 4 supersymmetry. We also obtain expressions for various two point functions at zero temperature. Finally, we find the expressions for the supercharges acting on more general wormholes with matter and present the superchord algebra.
更多
查看译文
关键词
2D Gravity,AdS-CFT Correspondence
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要