Influence of graphitization treatment on microstructure and flexural strength of C/C-ZrC-SiC composites fabricated via reactive melt infiltration

Yu Fu, Meiru Chen,Peng Xiao,Yang Li

CERAMICS INTERNATIONAL(2023)

引用 0|浏览0
暂无评分
摘要
C/C-ZrC-SiC composites were prepared by chemical vapor infiltration (CVI) and molten salt assisted reactive melt infiltration (RMI). The microstructure of low density and high density C/C composites without graphitization (LC/HC) and graphitization at 2000 degrees C (LCG/HCG) were compared. Moreover, the effects of graphitization of LC and HC on the microstructure and flexural strength of C/C-ZrC-SiC composites were investigated in detail. The composites prepared by infiltration of LC and LCG had lower flexural strength, 220.01 +/- 21.18 MPa and 197.94 +/- 19.05 MPa, respectively. However, the composites prepared by HC and HCG presented higher flexural strength, 308.76 +/- 12.35 MPa and 289.62 +/- 8.70 MPa, respectively. This was due to the phenomenon of fiber erosion in both LC and LCG during the RMI process. After graphitization, the flexural strength of C/C-ZrC-SiC composites prepared by RMI decreased, but the fracture behavior of the composites tends to be more mild. The decreased strength of the composites were caused by the increased matrix cracks, fiber damage in high temperature and the weak interfacial bonding. The improve of failure behavior of the composites was due to interface debonding between the fiber and matrix, and composites can consume the fracture energy through fiber pull-out.
更多
查看译文
关键词
C/C composites,Graphitization,Reactive melt infiltration,C/C-ZrC-SiC composites,Microstructure,Flexural strength
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要