Antimony Doped Hybrid Zinc Halide Crystals with Tunable Light Emission and Long-Term Stability

ADVANCED OPTICAL MATERIALS(2024)

引用 0|浏览0
暂无评分
摘要
As a class of emerging photoluminescent materials, hybrid halide crystals have drawn research attention for their potential application in the fields of light-emitting, security, and waveguide. Nevertheless, hybrid halide crystals containing antimony with long-term stability and tunable light emission are still increasingly in demand. In this work, serial new hybrid halide crystals (BZA)(2)ZnCl42H(2)O:xSb(3+) (x = 0-0.2, x represents the reaction ratio) and (BZA)(2)SbCl5 are synthesized (BZA = 2,4-diamino-6-phenyl-1,3,5-triazine). In (BZA)(2)ZnCl42H(2)O:xSb(3+) crystals, Sb3+ cations replace partial Zn2+ cations to form [SbCl4](-) tetrahedron. Red light emission caused by the substitution of Sb3+ for Zn2+ enhances as the doping rate increases, resulting in the tunable emission from light blue to pink and finally to dark red. There are two kinds of Sb3+ in (BZA)(2)SbCl5 crystal. Sb(1) has a sixfold coordination with Cl to form a [Sb(1)Cl-5]infinity 1D zigzag chain. Sb(2) atom adopts a fivefold coordination with Cl and is separated from each other by BZA(+) cations. (BZA)(2)SbCl5 crystal shows bright orange-yellow light emission with a photoluminescence quantum yield of 45%. Moreover, the organic-inorganic hybrid metal halide crystals containing antimony have excellent long-term stability, with phase and luminescence keeping nearly unchanged after more than six months in ambient air.
更多
查看译文
关键词
hybrid halide crystals,Sb3+,stability,tunable light emission
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要