Acoustic hologram-induced virtual in vivo enhanced waveguide (AH-VIEW).

Science advances(2024)

引用 0|浏览1
暂无评分
摘要
Optical imaging and phototherapy in deep tissues face notable challenges due to light scattering. We use encoded acoustic holograms to generate three-dimensional acoustic fields within the target medium, enabling instantaneous and robust modulation of the volumetric refractive index, thereby noninvasively controlling the trajectory of light. Through this approach, we achieved a remarkable 24.3% increase in tissue heating rate in vitro photothermal effect tests on porcine skin. In vivo photoacoustic imaging of mouse brain vasculature exhibits an improved signal-to-noise ratio through the intact scalp and skull. These findings demonstrate that our strategy can effectively suppress light scattering in complex biological tissues by inducing low-angle scattering, achieving an effective depth reaching the millimeter scale. The versatility of this strategy extends its potential applications to neuroscience, lithography, and additive manufacturing.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要