Excitation signatures of isochorically heated electrons in solids at finite wavenumber explored from first principles

arxiv(2024)

引用 0|浏览6
暂无评分
摘要
Ultrafast heating of solids with modern X-ray free electron lasers (XFELs) leads to a unique set of conditions that is characterized by the simultaneous presence of heated electrons in a cold ionic lattice. In this work, we analyze the effect of electronic heating on the dynamic structure factor (DSF) in bulk Aluminium (Al) with a face-centered cubic lattice and in silicon (Si) with a crystal diamond structure using first-principles linear-response time-dependent density functional theory simulations. We find a thermally induced red shift of the collective plasmon excitation in both materials. In addition, we show that the heating of the electrons in Al can lead to the formation of a double-plasmon peak due to the extension of the Landau damping region to smaller wavenumbers. Finally, we demonstrate that thermal effects generate a measurable and distinct signature (peak-valley structure) in the DSF of Si at small frequencies. Our simulations indicate that there is a variety of new features in the spectrum of X-ray-driven solids, specifically at finite momentum transfer, which can probed in upcoming X-ray Thomson scattering (XRTS) experiments at various XFEL facilities.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要