Design of novel isoxazole derivatives as tubulin inhibitors using computer-aided techniques: QSAR modeling, in silico ADMETox, molecular docking, molecular dynamics, biological efficacy, and retrosynthesis

JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS(2024)

引用 0|浏览2
暂无评分
摘要
In the current work, computational methods were used to investigate new isoxazole derivatives that could be used as tubulin inhibitors. The study aims to develop a reliable quantitative structure-activity relationship (QSAR) model, following the criteria set by Golbraikh, Tropsha, and Roy. As a result, seven candidate compounds were developed, all having higher activity than the well-established anticancer agent Cisplatin (Cisp). According to the ADMETox in silico test, the candidates Pr4, Pr5, and P6 can be toxic. As a result, we have chosen to focus our study on compounds Pr1, Pr2, and Pr3. Molecular docking analysis revealed that drug candidate Pr2 exhibits the highest stability within the oxidized quinone reductase 2 (PDB ID: 4zvm), target receptor (Delta G(Pr2) = Delta G(Pr3) = -10.4 < Delta G(Pr1) = -10.0 < Delta G(Cisp) = -7.3 kcal/mol). This finding aligns with the activity predictions made by the QSAR model. Furthermore, molecular dynamics simulations of the Pr2-4zvm complex over 100 ns confirm the ligand's robust stability within the receptor's active site, supporting the results obtained from molecular docking and the QSAR model predictions. The CaverDock software was utilized to identify the tunnels likely to be followed by ligands moving from the active site to the receptor surface. This analysis also helped in determining the biological efficacy of the target compounds. The results indicated that the Pr2 compound is more effective than the others. Finally, the computer-assisted retrosynthesis process of two high confidence sequences was used to synthesize drug candidates.
更多
查看译文
关键词
ADMETox,anti-tubulin activity,biological efficacy,molecular docking,molecular dynamics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要