Phonon modes controlled by primary chemical structure of partially fluorinated dimyristoylphosphatidylcholine (DMPC) revealed by multiple-angle incidence resolution spectrometry (MAIRS)

JOURNAL OF CHEMICAL PHYSICS(2024)

引用 0|浏览1
暂无评分
摘要
Partially fluorinated dimyristoylphosphatidylcholines (DMPCs) involving double alkyl chains are employed to control the phonon generation in thin films, which is examined by infrared (IR) spectroscopy coupled with multiple-angle incidence resolution spectrometry (MAIRS). technique. Compounds having perfluoroalkyl (R-f) chains are known to exhibit phonon bands in IR spectra because of the strong dipole-dipole interactions. Since the phonon bands of an organic matter have a similar shape to the normal absorption bands, however, recognition of the phonon modes is difficult and confusing for IR spectroscopists. Here, we show that MAIRS works out for finding phonon modes in monolayers: the Berreman shift is readily captured by the MAIRS in-plane and out-of-plane (OP) spectra. By measuring the longitudinal-optic (LO) energy-loss function spectrum of a bulk sample, the degree of molecular aggregation in the monolayer is also revealed by comparing the OP spectrum of the monolayer to the LO one. In addition, partially fluorinated DMPC compounds having both hydrocarbon and R-f chains are prepared, and they are used to obstruct the self-aggregation of the R-f groups in the film. As a result, the phonon characteristics are mostly lost in the MAIRS spectra as expected. (c) 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要