Impact of the polymer dispersity on the properties of curcumin/polyvinylpyrrolidone amorphous solid dispersions.

International journal of pharmaceutics(2024)

引用 0|浏览1
暂无评分
摘要
Amorphous solid dispersions (ASD) are known to enhance the absorption of poorly water-soluble drugs. In this work we synthesise well-defined Polyvinylpyrrolidone (PVP) to establish the impact of dispersity and chain-end functionality on the physical properties of Curcumin (CUR)/PVP ASD. Thermodynamic characterisation of synthesised PVP emphasises a strong effect of the dispersity on the glass transition temperature (Tg), 50 °C higher for synthesised PVP than for commercial PVP K12 of same molar mass. This increase of Tg affects the thermodynamic properties of CUR/PVP ASD successfully formulated up to 70 wt% of CUR by milling or solvent evaporation. The evolution of both the Tg and CUR solubility values versus CUR content points out the development of fairly strong CUR-PVP interactions that strengthen the antiplasticising effect of PVP on the Tg of ASD. However, for ASD formulated with commercial PVP this effect is counterbalanced at low CUR content by a plasticising effect due to the shortest PVP chains. Moreover, the overlay of the phase and state diagrams highlights the strong impact of the polymer dispersity on the stability of CUR/PVP ASD. ASD formulated with low dispersity PVP are stable on larger temperature and concentration ranges than those formulated with PVP K12.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要