Malicious Package Detection using Metadata Information

S. Halder, M. Bewong, A. Mahboubi, Y. Jiang,R. Islam,Z. Islam,R. Ip,E. Ahmed,G. Ramachandran,A. Babar

CoRR(2024)

引用 0|浏览0
暂无评分
摘要
Protecting software supply chains from malicious packages is paramount in the evolving landscape of software development. Attacks on the software supply chain involve attackers injecting harmful software into commonly used packages or libraries in a software repository. For instance, JavaScript uses Node Package Manager (NPM), and Python uses Python Package Index (PyPi) as their respective package repositories. In the past, NPM has had vulnerabilities such as the event-stream incident, where a malicious package was introduced into a popular NPM package, potentially impacting a wide range of projects. As the integration of third-party packages becomes increasingly ubiquitous in modern software development, accelerating the creation and deployment of applications, the need for a robust detection mechanism has become critical. On the other hand, due to the sheer volume of new packages being released daily, the task of identifying malicious packages presents a significant challenge. To address this issue, in this paper, we introduce a metadata-based malicious package detection model, MeMPtec. This model extracts a set of features from package metadata information. These extracted features are classified as either easy-to-manipulate (ETM) or difficult-to-manipulate (DTM) features based on monotonicity and restricted control properties. By utilising these metadata features, not only do we improve the effectiveness of detecting malicious packages, but also we demonstrate its resistance to adversarial attacks in comparison with existing state-of-the-art. Our experiments indicate a significant reduction in both false positives (up to 97.56 negatives (up to 91.86
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要