Efficient reduction of Feynman integrals on supercomputers

A. V. Belitsky, A. A. Kokosinskaya,A. V. Smirnov, V. V. Voevodin, M. Zeng

arxiv(2024)

引用 0|浏览0
暂无评分
摘要
Feynman integral reduction by means of integration-by-parts identities is a major power gadget in a theorist toolbox indispensable for calculation of multiloop quantum effects relevant for particle phenomenology and formal theory alike. An algorithmic approach consists of solving a large sparse non-square system of homogeneous linear equations with polynomial coefficients. While an analytical way of doing this is legitimate and was pursued for decades, it undoubtedly has its limitations when applied in complicated circumstances. Thus, a complementary framework based on modular arithmetic becomes critical on the way to conquer the current `what is possible' frontier. This calls for use of supercomputers to address the reduction problem. In order to properly utilize these computational resources, one has to efficiently optimize the technique for this purpose. Presently, we discuss and implement various methods which allow us to significantly improve performance of Feynman integral reduction within the FIRE environment.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要